Induction of angiogenesis by heat shock protein 90 mediated by protein kinase Akt and endothelial nitric oxide synthase.
نویسندگان
چکیده
OBJECTIVE A specific inhibitor of heat shock protein 90 (Hsp90), 17-AAG, has been shown to inhibit tumor growth through cell cycle arrest, differentiation, or apoptosis. Because angiogenesis is important for tumor growth, we hypothesize that inhibition of angiogenesis by 17-AAG may mediate some of its antitumor effects. METHODS AND RESULTS Because protein kinase Akt and endothelial nitric oxide synthase (eNOS) are critical for angiogenesis, we studied the effects of 17-AAG on the phosphorylation and expression of Akt and eNOS in human umbilical vein endothelial cells. In a concentration- and time-dependent manner, inhibition of Hsp90 by 17-AAG decreased Akt and eNOS expression by 74% and 81%, respectively. Inhibition of eNOS expression by 17-AAG occurred at the transcriptional level as determined by eNOS promoter activity and nuclear run-on assay. Furthermore, treatment with 17-AAG decreased basal and vascular endothelial growth factor-stimulated Akt and eNOS phosphorylation. This corresponded with decreased NO production and inhibition of endothelial cell migration and angiogenesis. The anti-angiogenic effect of 17-AAG was partially reversed by the NO donor, SNAP. CONCLUSIONS These findings indicate that Hsp90 is important not only for Akt and eNOS phosphorylation but also for eNOS gene transcription and suggests that Hsp90 may be a novel target for anti-angiogenic therapy.
منابع مشابه
HSP90 and Akt modulate Ang-1-induced angiogenesis via NO in coronary artery endothelium.
This study examines the notion that heat shock protein (HSP) 90 binding to nitric oxide (NO), endothelial NO synthase (eNOS), and PI3K-Akt regulate angiopoietin (Ang)-1-induced angiogenesis in porcine coronary artery endothelial cells (PCAEC). Exposure to Ang-1 (250 ng/ml) for periods up to 2 h resulted in a time-dependent increase in eNOS phosphorylation at Ser 1177 that occurred by 5 min and ...
متن کاملWaon therapy upregulates Hsp90 and leads to angiogenesis through the Akt-endothelial nitric oxide synthase pathway in mouse hindlimb ischemia.
BACKGROUND Thermal therapy, namely Waon therapy, has previously been reported to regulate nitric oxide (NO) and endothelial NO synthase (eNOS) and augment ischemia-induced angiogenesis in mice and improve limb ischemia in patients with peripheral artery disease. The aim of this study was to clarify the precise mechanism by which Waon therapy augments angiogenesis in mice with hindlimb ischemia....
متن کاملFlow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases.
Vascular endothelial cells are directly and continuously exposed to fluid shear stress generated by blood flow. Shear stress regulates endothelial structure and function by controlling expression of mechanosensitive genes and production of vasoactive factors such as nitric oxide (NO). Though it is well known that shear stress stimulates NO production from endothelial nitric oxide synthase (eNOS...
متن کاملEstradiol-mediated endothelial nitric oxide synthase association with heat shock protein 90 requires adenosine monophosphate-dependent protein kinase.
BACKGROUND Estradiol activates endothelial nitric oxide synthase (eNOS) by mechanisms that involve estrogen receptor-alpha (ERalpha), protein kinase B/Akt, mitogen-activated protein kinases, and heat shock protein 90 (HSP90). Recently, AMP-activated protein kinase (AMPK), an enzyme that plays a crucial role in cellular adaptation to metabolic stress, has been implicated in physiological eNOS ac...
متن کاملGeranylgeranylacetone, heat shock protein 90/AMP-activated protein kinase/endothelial nitric oxide synthase/nitric oxide pathway, and endothelial function in humans.
OBJECTIVE Geranylgeranylacetone (GGA) induces expression of heat shock protein 90 (Hsp90), an adaptor molecule for assembly of endothelial nitric oxide synthase (eNOS) phosphorylation complex. The purpose of this study was to determine whether GGA enhances Hsp90 expression and augments endothelium-dependent vasodilation via upregulation of eNOS in humans. METHODS AND RESULTS We evaluated the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 24 12 شماره
صفحات -
تاریخ انتشار 2004